Add color variance functions and such
This commit is contained in:
parent
83eb229189
commit
5649a2d4cd
2 changed files with 45 additions and 7 deletions
|
@ -14,8 +14,11 @@ as the sum of the different pixel scores.
|
||||||
For a given pixel(`po` for the original image and `pm` for the mask, same position)
|
For a given pixel(`po` for the original image and `pm` for the mask, same position)
|
||||||
its score will be calculated as follows:
|
its score will be calculated as follows:
|
||||||
|
|
||||||
|
`v` for variance
|
||||||
|
|
||||||
```
|
```
|
||||||
S_p = | po - acolor | x (0.5 - pm)
|
||po - acolor|| - ||v - acolor||
|
||||||
|
S_p = (|po - acolor| - v) x (0.5 - pm)
|
||||||
```
|
```
|
||||||
|
|
||||||
it is assumed that the font mask is of values between `0..1` and made as a
|
it is assumed that the font mask is of values between `0..1` and made as a
|
||||||
|
|
47
classify.py
47
classify.py
|
@ -1,6 +1,7 @@
|
||||||
import cv2 as cv
|
import cv2 as cv
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import h5py as h5
|
import h5py as h5
|
||||||
|
from rasterizer import text_to_matrix
|
||||||
|
|
||||||
db = None
|
db = None
|
||||||
|
|
||||||
|
@ -30,9 +31,8 @@ def extract_bb(img, bb):
|
||||||
rot_matrix = cv.getRotationMatrix2D(center, rect[2], 1)
|
rot_matrix = cv.getRotationMatrix2D(center, rect[2], 1)
|
||||||
rot_img = cv.warpAffine(img, rot_matrix, (img.shape[1], img.shape[0]))
|
rot_img = cv.warpAffine(img, rot_matrix, (img.shape[1], img.shape[0]))
|
||||||
# bounding box is now axis aligned, and we can crop it
|
# bounding box is now axis aligned, and we can crop it
|
||||||
print(size)
|
|
||||||
cropped = cv.getRectSubPix(rot_img, size, center)
|
cropped = cv.getRectSubPix(rot_img, size, center)
|
||||||
return cropped
|
return cropped.transpose(1, 0, 2)[::, ::-1, ::]
|
||||||
|
|
||||||
def get_img(index):
|
def get_img(index):
|
||||||
''' gets image from database '''
|
''' gets image from database '''
|
||||||
|
@ -73,7 +73,25 @@ def get_avg_color(img, mask):
|
||||||
avg /= count
|
avg /= count
|
||||||
return avg
|
return avg
|
||||||
|
|
||||||
def calc_score(img, mask, avg_color):
|
def get_color_variance(img, mask, avg_color):
|
||||||
|
''' Gets color variance under the mask with given avg_color '''
|
||||||
|
sx, sy, sw = img.shape
|
||||||
|
mx, my = mask.shape
|
||||||
|
if sx != mx or sy != my:
|
||||||
|
print('Image and mask size doesnt match!')
|
||||||
|
return None
|
||||||
|
var = np.zeros(sw, dtype=np.float32)
|
||||||
|
count = 0.0
|
||||||
|
for x in range(sx):
|
||||||
|
for y in range(sy):
|
||||||
|
m = mask[x, y]
|
||||||
|
diff = img[x, y] - avg_color
|
||||||
|
var += diff.dot(diff) * m
|
||||||
|
count += m
|
||||||
|
var /= count
|
||||||
|
return var
|
||||||
|
|
||||||
|
def calc_score(img, mask, avg_color, var_mag):
|
||||||
'''
|
'''
|
||||||
Calculates the score for each mask with each color
|
Calculates the score for each mask with each color
|
||||||
'''
|
'''
|
||||||
|
@ -88,8 +106,25 @@ def calc_score(img, mask, avg_color):
|
||||||
score = 0.0
|
score = 0.0
|
||||||
for x in range(sx):
|
for x in range(sx):
|
||||||
for y in range(sy):
|
for y in range(sy):
|
||||||
m = 0.5 - mask[x, y]
|
m = mask[x, y] - 0.5
|
||||||
diff = img[x, y] - avg_color
|
diff = img[x, y] - avg_color
|
||||||
mag = np.sqrt(diff.dot(diff)) # calculate magnitude
|
mag = var_mag - np.sqrt(diff.dot(diff)) # calculate magnitude
|
||||||
score += mag * m
|
score += mag * m / var_mag
|
||||||
return score
|
return score
|
||||||
|
|
||||||
|
def score_font(char_img, char, font_name):
|
||||||
|
'''
|
||||||
|
Takes a char_img, the wanted character and a font_name/path
|
||||||
|
and calculates the relevant score
|
||||||
|
'''
|
||||||
|
# default to 128, i think it should be enough and we will probably mostly
|
||||||
|
# reduce the size anyway, also change from rgb to grayscale
|
||||||
|
font_img = text_to_matrix(char, 128, font_name)[::, ::, 1]
|
||||||
|
# resize font_img to match char_img dimensions
|
||||||
|
dim = [char_img.shape[1], char_img.shape[0]]
|
||||||
|
mask = cv.resize(font_img, dim, interpolation=cv.INTER_LINEAR)
|
||||||
|
# get average color
|
||||||
|
ac = get_avg_color(char_img, mask)
|
||||||
|
var = get_color_variance(char_img, mask, ac)
|
||||||
|
var = np.sqrt(var.dot(var))
|
||||||
|
return calc_score(char_img, mask, ac, var)
|
||||||
|
|
Loading…
Reference in a new issue